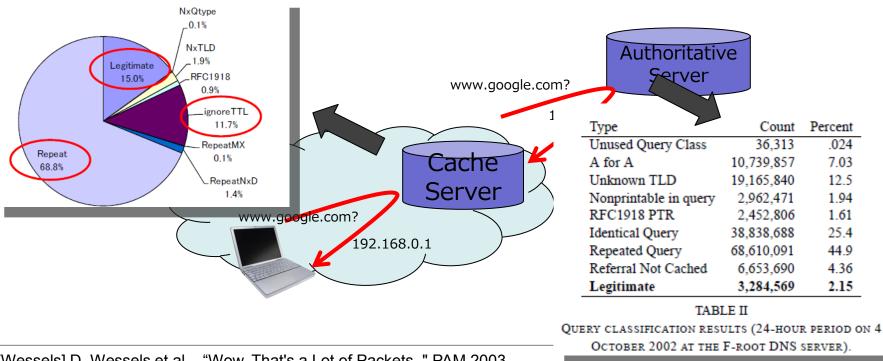


Classifying DNS Heavy User Traffic by using Hierarchical Aggregate Entropy

2012/3/5 Keisuke Ishibashi, Kazumichi Sato NTT Service Integration Labs


Motivation

- Network resources are consumed by a small number of heavy users
- Controlling traffic from heavy users is a crucial task for efficient use of network.
 - filtering, rate limiting, charging
- Before controlling the heavy user traffic, we need to understand what type of traffic they send
- If heavy user traffic are mostly anomalous, then filtering such traffic is rather acceptable.
- Anomalous traffic: DDoS attack, spam, illegal file exchange etc.
- Thus, we need to classify heavy user traffic whether normal or abnormal
- In this talk, we focus on heavy users in DNS traffic, one of the most important control traffic in the Internet

Bogus traffic in DNS

- DNS: mainly used for mapping domain name to IP address or vice versa
- Two types of servers: caching server and authoritative server
- Bogus queries are consuming resources of both DNS authoritative servers and caching servers
 - repeated queires for a single name (bug?)
 - scaning quereis for non exiting names (worm?)

[Wessels] D. Wessels et.al., "Wow, That's a Lot of Packets, " PAM 2003.

[Toyono] T. Toyono et. al., "An analysis of the queries from the view point of caching servers," 2007 DNS-Operations Workshop.

Motivation cont'd

- Most of bogus queries are sent by small number of heavy clients [toyono]
 - Filtering queries sent by those heavy clients is efficient to protect DNS server resources

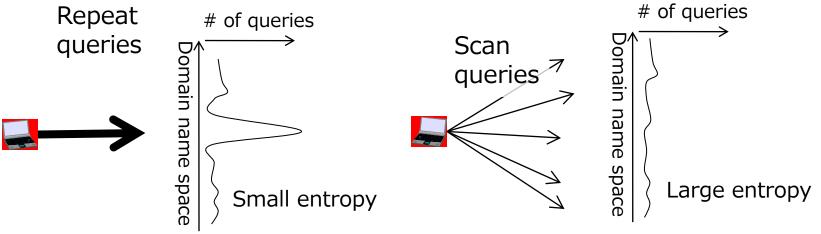
		100	200	200	400	500	(Percentage of total queries)
	type rate	100qps	200qps	Soudba	400qps	500qps	total queries)
	Legitimate	0.09%	0.01%	0%	0%	0%	
	NxQtype	0%	0%	0%	0%	0%	
	NxTLD	0%	0%	0%	0%	0%	
	RFC1918	0.80%	0%	0%	0%	0%	
	ignoreTTL	1.63%	0.05%	0.01%	0%	0%	
	RepeatMX	0.01%	0%	0%	0%	0%	
_	RepeatNxD	0.64%	0%	0%	0%	0%	
	Repeat	59.69%	59.69%	59.69%	59.69%	59.69%	

- However, not all queries from heavy clients are bogus
 - PTR queries from web servers (analog)
 - Aggregated queries from DNS proxies

Normal heavy user

•DNS prefetch

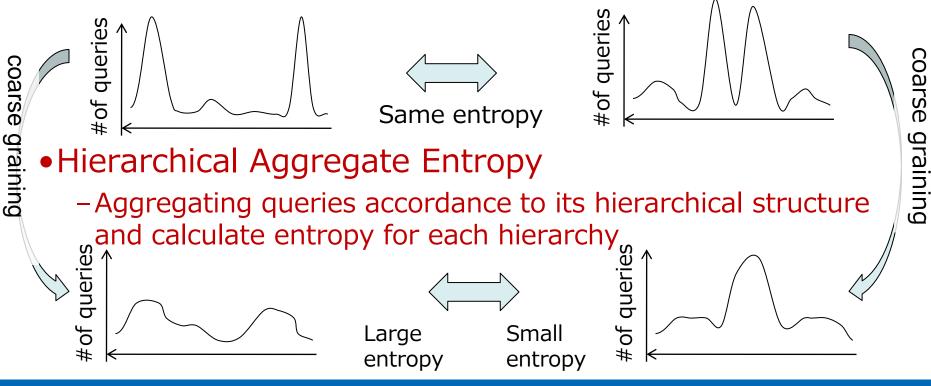
- -resolves all the domain names of the URLs in a browsed web page before the URL is actually clicked
- -Faster web but burst (unnecessary) queries for a page that contains huge URLs


•Log analyzer

- Log analyzers in web server send reverse queries (resolve domain names for IP addresses) for addresses in their access logs
- What organizations access our web servers?

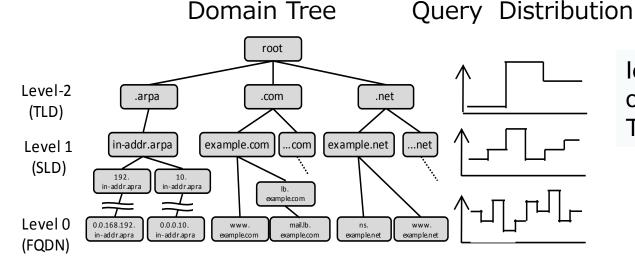
Entropy based classification

- Needs to classify heavy clients into normal users and abnormal users
- \Rightarrow Classify heavy clients by their query pattern
- How to capture query patterns?
- \Rightarrow Use of entropy of queries in domain name spaces



 Entropy of legitimate queries: expected to lie between them

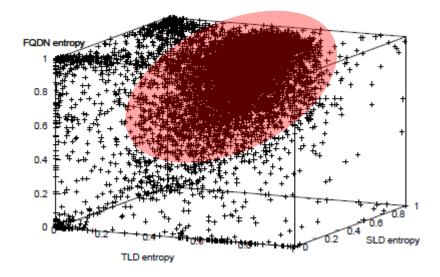
Hierarchical Aggregate Entropy(1/2)


- Does not have information on spatial characteristics
 - Independent on where queries concentrate or diverse in domain name spaces
 - -Only depends on how queries concentrate or diverse

Hierarchical Aggregate Entropy(2/2)

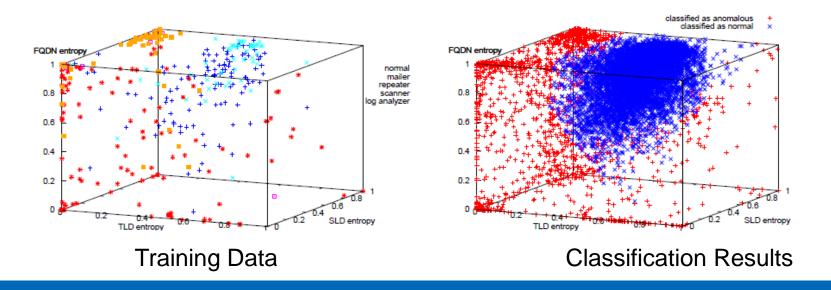
- DNS: tree based hierarchical structure
 - − Fully qualified domain name (FQDN): www.google.com, www.ntt.co.jp \Rightarrow FQDN-level entropy $H(D^{(0)}|D^{(1)})$: deviation in www.example.org level
 - Second level domain (SLD): .google.com
 ⇒ SLD-level entropy H(D⁽¹⁾|D⁽²⁾)) :deviation in example.org level
 - Top level domain (TLD) : .com, .net, .jp...
 - \Rightarrow TLD-level entropy H(D⁽²⁾) dispersion in queries for com, .net, .jp...

$$H(D^{(0)}) = H(D^{(2)}) + H(D^{(1)}|D^{(2)}) + H(D^{(0)}|D^{(1)})$$



Identify the deviation occurs intra TLD or inter TLD.

NTT


- •Calculate entropies of top 10,000 heavy clients for DNS traffic monitored at DNS caching servers
- •Entropies from normal clients concentrated in a specific region
- ⇒Clients whose entropies are out of the region can be expected to be abnormal

Classification by using SVM

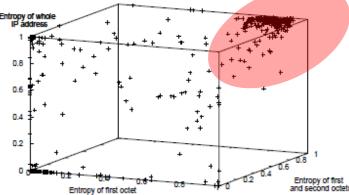
- Extract normal domain by using SVM
 - -Training Data: manually labeled data for host sending over 1 query per second
 - -SVM(Support Vector Machine): generates boundary between normal region and abnormal region based on the training data

Accuracy of classification

- Evaluate the accuracy with 10 cross-fold validation
 - Separate training data into 10 groups.
 - Classify host in a group by using training data of the rest of nine groups and compare the classification results and manual label.
- 10% improvement can be achievement by using hierarchical aggregate entropy

Entropy	Mis-classification ratio (FP+NP)
Hierarchical Aggregate Entropy	8.7%
FQDN Entropy	18.9%
SLD Entropy	23.3%
TLD Entropy	19.8%

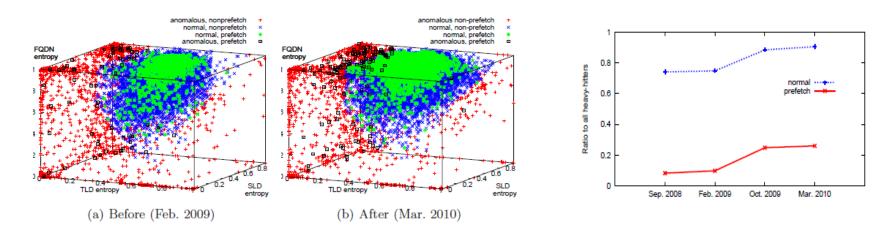
Reverse query


 Reverse queries (IP addr -> FQDN) have common SLD and TLD -> entropy is zero.
 -1.0.168.192.in-addr.arpa.

SI D

• Apply our hierarchical aggregate entropy to IP address part

-1.0.168.192.in-addr.arpa. TLD SLD


•Confirm concentration of entropy of normal clients to a domain

Effect of DNS prefetch

- Extract Firefox users, and compare their entropies before and after Firefox implements DNS prefetch
- After the implementation, ratio of Firefox users among heavy users increases, and that of normal heavy users increases as well.
- Filtering queries from heavy users may impede Internet access of normal users

- Propose the use of hierarchical aggregate entropies to classify DNS heavy clients
- •Can capture spatial dispersion of queries among domain name spaces
- •Entropies from normal clients concentrated in a specific region
- •Experimental results show that the proposed method achieve 10 % improvement in classification accuracy